

QUALITÉ ACOUSTIQUE. INDÉPENDANCE ÉNERGÉTIQUE.

MODULE SUB VTL118

DATASHEET

VTL118

PROFILED VENT

VERY HIGH EFFICIENCY

MEDIUM THROW

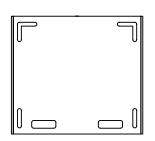
HIGH-EFFICIENCY SUBWOOFER

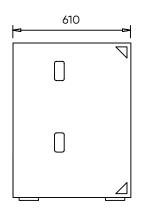
Hybrid ported-box with quarter-wave resonator

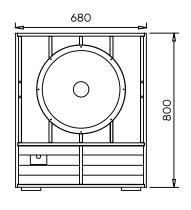
LARGE PROFILED VENT

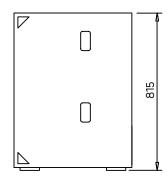
Maintains efficiency at high levels

DESIGNED FOR TOURING

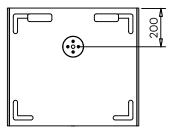

Easy to handle

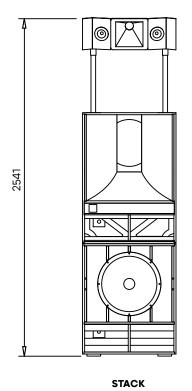

PSEUDO-OMNIDIRECTIONAL

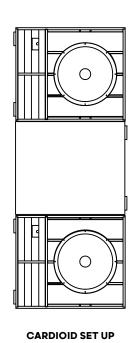

Facilitates cardioid setups

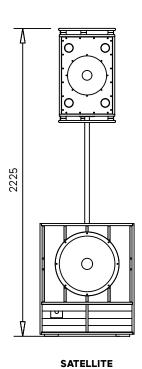

- Subwoofer
- Two Speakon 4-pin IN and OUT
- Radial assembly and cardioid setup
- Reinforced birch plywood 15mm
- Textured semi-matte coating finish
- Monoblock handles / M20 pole socket / Epoxy-coated steel grille / Feet and counter-forms

TYPE	Hybrid subwoofer: Quarter-wave resonator + bass reflex with profiled vent
TRANSDUCERS	18'' Woofer - 77 mm voice coil - neodymium waterproof fiberglass membrane
FREQUENCY RESPONSE	35-125 Hz (+/-3 dB)
CONTINUOUS POWER HANDLING	1400 W (nominal program power capacity + 3 dB)
ACOUSTIC EFFICIENCY	113 W (for 102 dBA equivalent*)
SENSITIVITY	105 dB (at 1 W constant, 1 m) 103 dB (at 2 V constant, 1 m)
MAX SPL	134 dB SPL (@1 m, pink noise 6 dB crest factor)
IMPEDANCE	8 ohms
DIMENSIONS (LXPXH)mm	680x610x800
WEIGHT	48 kg
OTHER	M20 Pole Socket / Speakon 4-pin IN & OUT / Steel Handles Epoxy-coated Steel Grille / Feet and Counter-forms / Skateboard Wheels Padded Velcro Cover









ACOUSTIC EFFICIENCY LABEL

*The figure given represents the electrical power dissipated by the speaker to generate over its bandwidth a sound level equivalent to 102 dBA with a pink noise input. For calculation purposes, the speaker is considered being part of an equalized sysytem with absolutely flat response from 20 Hz to 20 kHz.

The calculation method is linear and does not take into account high power non-linear phenomena. Calculation details are available in the paper Quantifying Loudspeakers' Power Consumption, published in the AES journal (July/August 2022, Vol 70 no 7/8).

PASSIVE SPEAKERS

*The figure given represents the electrical power dissipated by the speaker to generate over its bandwidth a sound level equivalent to 102 dBA with a pink noise input. For calculation purposes, the speaker is considered being part of an equalized sysytem with absolutely flat response from 20 Hz to 20 kHz.

The calculation method is linear and does not take into account high power non-linear phenomena. Calculation details are available in the paper Quantifying Loudspeakers' Power Consumption, published in the AES journal (July/August 2022, Vol 70 no 7/8).